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Abstract— Using optical technology brings with it advantages
such as scalability, high bandwidth and power consumption for
the design of switches/routers. However, reconfiguring the optical
fabric of these switches requires significant time under current
technology. Conventional slot-by-slot scheduling may severely
cripple the performance of these switches due to its frequent
request for fabric reconfiguration. A more appropriate way is
to use a Time Slot Assignment (TSA) scheduling approach. The
switch gathers the incoming traffic periodically and schedules
them in batches, while trying to minimize the transmission time.
This Optical Switch Scheduling (OSS) problem is defined in this
paper and it is NP-complete. Earlier TSA algorithms normally
assume the reconfiguration delay to be either zero or infinity for
simplicity. To this end, we propose a λ-ADJUST algorithm, which
breaks this limitation and self-adjusts with different reconfigu-
ration delay values. The algorithm runs at O(δN2 log N) time
complexity, guarantees a 100% throughput and a bounded worst
case delay. In addition, it outperforms existing TSA algorithms
across a large spectrum of reconfiguration values.

I. INTRODUCTION

The explosion of Internet traffic has increased the demand
for high-speed, large-port-count backbone switches. Optical
switches based on 2D/3D MEMS mirrors and similar tech-
nologies are favored for their scalability, high bit rate and
low power consumption. However, reconfiguring the fabric
connections in optical switches involves mechanical settling,
synchronization, and thus is more time-consuming than their
electric counterparts. These reconfiguration overheads range
from milliseconds to microseconds. It is around 10−1 to 105

slot times for a system with slotted time equals to 50ns (64
bytes at 10Gb/s).

A traditional slot-by-slot scheduling method may severely
cripple the performance of optical switches because of fre-
quent fabric reconfiguration. An appropriate solution is to
use the Time Slot Assignment (TSA) approach which holds
the connections for several time slots.The switch periodically
accumulates incoming traffic and maps this batch to a set
of switch configurations [1][2][3][4][5]. The length of each
individual configuration is decided by the algorithm to achieve
the shortest batch transmission time. This batch-scheduling
problem (named Optical Switch Scheduling in this paper) is
NP-complete for non-zero reconfiguration delays. Although
extensive studies have been done in this area, to the best of
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Fig. 1. Three-stage pipeline diagram

our knowledge, almost all of them simply assume the recon-
figuration delay is zero [1][2] or infinity [3][4] to simplify the
problem and cannot fit well into medium configuration values.
We propose a new scheduling algorithm λ-ADJUST which
is suitable for most reconfiguration values. The algorithm
introduces a regulating factor δ =

√
T/λN which self-adjusts

with different system parameters (T is the accumulation time,
N is switch port number and λ is reconfiguration delay).
According to simulations and mathematical deductions, λ-
ADJUST outperforms previous approaches across a large
range of reconfiguration values. It runs with O(δN2 logN)
time complexity, guarantees to send out traffic within 3T time
slots and is stable for all admissible traffic patterns.

The rest of the paper is organized as follows. Section II
defines the scheduling problem, reviews the previous work
on the simplified form of OSS. The heuristic λ-ADJUST
algorithm is described in detail in Section III. Section IV is
the conclusion.

II. OPTICAL SWITCH SCHEDULING (OSS) PROBLEM

This paper deals with the scheduling of non-blocking op-
tical switches. To simplify the problem but still maintain its
generality, an optical switch is abstracted as a crossbar-based,
combined input-output queue model. Time is slotted and
changing from one switch configuration to another requires λ
time slots. An electronic switch can be viewed as a special case
with λ = 0. A switch works in an accumulating-scheduling-
transmission cycle. The length of the accumulating stage is set
to be a predefined system constant T. Incoming traffic in these
T time slots will be stored in traffic matrix D. Based on D,
the scheduling stage determines a set of fabric configurations.
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The transmission stage then follows the decision, changing the
fabric between the actual traffic-sending and reconfiguration
states alternatively. Transmission time equals to the summation
of traffic-sending time and reconfiguration overheads. In order
to send out the traffic collected in T time slots within T time
slots, speedup is needed to compensate for the reconfiguration
overhead λ. The operations can be further pipelined as shown
in Fig. 1. The diagram indicates that a packet will go through
the switch within 3T slot times (here, we assume a scheduling
period equals T for simplicity). The scheduling algorithm is
stable under any admissible traffic patterns and bounded worst
delay (3T) makes it easy to provide QoS guarantees.

A. Definitions

Below is a list of notations used throughout the paper:
N number of switch ports
T traffic accumulation interval in slot times;

batch size
D cumulative traffic matrix in T time slots
λ reconfiguration overhead in slot times
s number of fabric configurations per batch
P fabric configuration ( 0-1 matrix with at most

one non-zero element at each row or column )
l holding interval of fabric configuration (l is

integer for a time slotted system)
δ regulating factor, influenced by system

parameters as λ, T and N
D = (dij) is a nonnegative integer N × N matrix. dij

represents the number of packets received in input i whose
destination is j during the accumulating stage. We define a
line of matrix to be a row or a column. A line sum is the sum
of all the elements in the line.

Definition 1 (Admissible traffic): If traffic matrix D stands
for the packets that are accumulated during T time slots, a
traffic pattern is admissible only when the line sum of D is
no larger than T. That is,

∑N
i=1 dij ≤ T , and

∑N
j=1 dij ≤ T .

We assume traffic to our optical switch is admissible.
Definition 2 (Matrix covering): A traffic matrix D is cov-

ered by a set of fabric configurations P (1), . . . , P (s) and cor-
responding weights l1, . . . , ls, if

∑s
k=1 lkp

(k)
ij ≥ dij , ∀i, j ∈

1, . . . , N . Here, P (k)
ij is the (i, j) element of configuration

matrix P (k). In the case of equality for all i and j, the switch
configurations exactly cover D.

Definition 3 (Covering cost): Given a traffic matrix D, and
reconfiguration delay λ. If a particular set of switch configura-
tions P (1), . . . , P (s) with weights l1, . . . , ls covers the traffic
matrix, its covering cost is defined as cost =

∑s
k=1 lk + sλ.

Definition 4 (Optical switch scheduling (OSS) problem):
Given a traffic matrix D, reconfiguration delay λ and
accumulation time T; find a set of switch configurations and
their respective weights, which covers the traffic matrix and
minimizes the covering cost.

Input: N×N non-negative integer matrix D, positive integer
λ and T , D satisfies:

N∑

i=1

dij ≤ T,
N∑

j=1

dij ≤ T,∀i, j ∈ 1, . . . , N (1)

Output: a set of configuration matrices P (1), . . . , P (s) and
the corresponding non-negative integer weights l1, . . . , ls, that
satisfies:

s∑

k=1

lkp
(k)
ij ≥ dij ,∀i, j ∈ 1, . . . , N (2)

s∑

k=1

lk + sλ is minimized (3)

B. Simplified OSS problem

The OSS problem can be proven to be NP-complete for
non-zero λ by being reduced from an existing NP-complete
timetable design problem (For details of timetable design
problem, please refer to [6]). Previous research normally
assumes the reconfiguration time to be extreme values, such
as λ = 0 or λ→ ∞, to simplify the problem.

• λ = 0. Equation (3) now changes to: minimize
∑s

k=1 lk.
The lower bound of

∑s
k=1 lk equals to max(

∑N
i=1 dij ,∑N

j=1 dij), ∀i, j ∈ 1, . . . , N , which is the maximum line
sum. Please note the OSS problem with zero configura-
tion overhead is not NP-complete and its optimal solution
is achieved by many algorithms [1][4]. As a representa-
tive, EXACT algorithm [1] meets this lower bound using
the System of Distinct Representatives (SDR) method.
The number configurations used is bounded by N2 −
2N + 2. It has a O(N5) time complexity.

• λ → ∞. Now sλ occupies the major portion of
covering cost. Equation (3) is satisfied only when
s is first minimized. The lower bound of s is
max(maxi(ri),maxj(cj)), ∀i, j ∈ 1, . . . , N , where ri
(cj) is the number of nonzero entries on row i (column
j). The OSS problem with an infinite configuration delay
is still NP-complete and only a suboptimal solution
can be achieved. The representative algorithm is MIN
proposed in [3]. MIN uses the least possible number of
configurations and thus minimizes sλ part. Furthermore,
it tries to group the matrix entries which are roughly equal
in the same switching matrix. This helps to avoid wasted
time slots and hence reduces

∑s
k=1 lk. MIN has a O(N4)

time complexity.

III. λ-ADJUST ALGORITHM

Although assuming the reconfiguration delay to be extreme
values may greatly simplify the problem, we need to deal
with medium reconfiguration value in most cases. Scheduling
algorithms should perform well under different reconfiguration
values. An example in Fig. 2 shows two different methods for
covering a traffic matrix. The strategy in Fig. 2a covers the
matrix exactly with four configurations , using 12 + 4λ time
slots. Its alternative in Fig. 2b uses only three configurations
with cost 18+3λ. The better strategy is determined by different
λ values.
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A. Tradeoff between empty time slots and reconfiguration
overheads

Extreme approaches, such as EXACT and MIN, perform
well at their target particular cases, but they are not scalable to
the other medium reconfiguration delay values. The covering
cost of EXACT is bounded by T+(N2+2N−2)λ and grows
at least with the square of the number of ports of the switch.
This method is unacceptable for a system with a large port
number or reconfiguration delay. MIN algorithm avoids the
above problem at the cost of allowing more empty time slots.
Although MIN groups similar elements together to reduce the
empty time slots, it cannot fully avoid wastage. [5] shows the
traffic-sending time may be as large as Ω(logN) times of the
actual needed time for ‘minimizing the scheduling number’
kind of algorithm.

The problem of EXACT and MIN is that they only con-
centrate on minimizing one of the two influencing factors:
number of switchings or empty time slots, rather than finding
a balance between them. To keep the summation of traffic-
sending time and reconfiguration overhead minimal, a heuristic
solution should carefully keep a good balance between them.

B. Algorithm description

The idea of λ-ADJUST is motivated from: 1. Uses a
moderate number of configurations to achieve balance. 2.
Self-adjusts to different system parameters. 3. Has low time
complexity.
λ-ADJUST works by separating traffic D into quotient and

residue matrices and assigning configurations to each. The al-
gorithm generates quotient matrix A by dividing the elements
in D by T/δN and taking the floor. That is, aij = 	 dij

T/δN 
,
1 ≤ i, j ≤ N . Here δ is the regulating factor. Choosing an
appropriate value for δ is crucial to the performance of the
algorithm.

Lemma 1: The line sum of the quotient matrix is bounded
by δN .
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Fig. 3. One-to-one mapping between traffic matrix and bipartite multigraph

Proof : In this paper, we assume traffic is always admissible.
That is, for ∀i, j ∈ 1, 2, . . . , N ,

∑N
i=1 dij ≤ T ,

∑N
j=1 dij ≤

T . Consider a row in quotient matrix A,

N∑

j=1

aij =
N∑

j=1

	 dij

T/δN

 ≤ 	

∑N
j=1 dij

T/δN

 ≤ 	 T

T/δN

 ≤ δN

Proof for columns in A follows the same way.
Lemma 2: A N × N traffic matrix D with maximum line

sum S can be covered using S configuration matrices.
Proof : There exists a one-to-one mapping between this

matrix-covering problem and edge-coloring problem for bipar-
tite multigraph. The upper part of Fig. 3 shows an example of
mapping between traffic matrix and bipartite multigraph. Input
and output ports are mapped to be vertex sets. If dij = ω in
traffic matrix D, there are ω edges between the corresponding
vertices. Bipartite multigraph with maximum degree S is
proven to be S-colorable. Vertices and edges belonging to a
particular color can be mapped back to a switch configuration.
For detailed proof of the edge-coloring, please refer to Chapter
5 of [7].

Theorem 1: Quotient matrix A can be covered using δN
configuration matrices.

Proof: Comes directly from Lemma 1 and Lemma 2.
The residue matrix B is defined as bij = max(0, dij −

�T/δN� × aij). From its construction method, we can see
0 ≤ bij ≤ �T/δN�. The simplest way to schedule it is
to find N configuration matrices with weight �T/δN� which
collectively represent an all 1s matrix. MIN may provide better
performance with higher time complexity (O(N4)). Edge-
coloring algorithm is another candidate and its input now is
a bipartite ‘unigraph’ (lower part of Fig. 3) constructed from
residue matrix B. All these three covering methods will use
at most N configurations. Furthermore, the latter two use the
minimum possible number of configurations.

By now, we can see,

D = � T
δN

� ×A+B

≤ � T
δN

� ×
δN∑

k=1

P (k) + � T
δN

� ×
δN+N∑

k=δN+1

P (k) (4)

The covering cost of quotient and residue matrix is:
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cost =
s∑

k=1

lk + λs

= (
δN∑

k=1

� T
δN

� + λ× δN) + (
δN+N∑

k=δN+1

� T
δN

� + λN)

= (T + λN) + (λδN +
T

δ
) (5)

The first part of (5) is a constant determined by system
settings. In order to minimize (5), λδN + T/δ needs to be
minimized.

Lemma 3: Take two non-negative real numbers a and b. If
a× b = constant, a+ b is minimized when a = b.

Theorem 2: Covering cost of λ-ADJUST is minimized
when δ =

√
T/λN .

Proof : Since λδN × T/δ = λNT = constant, following
Lemma 3, the covering cost of λ-ADJUST is minimized when
λδN = T/δ. That is to set the regulation factor δ equivalent
to

√
T/λN .

DOUBLE [5] is the special case of λ-ADJUST which
always sets δ = 1. Traffic matrix D is divided by T/N and
generates two matrices: coarse matrix A aij = 	 dij

T/N 
 and
fine matrix B bij = max(0, dij − �T/N�aij). Both matrices
can be covered using N configurations.

An example of the λ-ADJUST execution is shown in Fig.
4c. For N = 3, T = 48 and λ = 1, the regulating factor
δ =

√
T/λN = 4. Quotient matrix A is generated by first

dividing each element of traffic matrix D by T/δN = 4, and
then taking the floor. For example, a11 is calculated by a11 =
	d11/4
. The edge coloring algorithm is used to find out the
configurations to cover A. Configurations for residue matrix
B can be found using any algorithm listed in Step 3.

The two main operations of λ-ADJUST determine its time
complexity. Dividing the traffic matrix D into quotient and
residue part takes O(N2) time. The edge-coloring algorithm
in Step 2 has a complexity of O(E log V ) [8]. E is the number
of edges and V is the number of vertices in the bipartite
multigraph. For the bipartite multigraph corresponding to
quotient matrix A, V = O(N) and E = O(δN2). As a whole,
λ-ADJUST has a time complexity of O(δN2 logN).

C. Discussion

An example is given in Fig. 4 to further clarify the execution
of MIN, DOUBLE and λ-ADJUST. In this particular example,
λ is set to be relative small (λ = 1) compared to accumulating
length (T = 48). It is not surprising that MIN has the
largest covering cost due to huge number of wasted time slots.
DOUBLE is not so cost effective too because the algorithm
selects a partition factor T/N = 16, which incurs a large fine
matrix at high cost (Please refer to [5] for execution details).
In other words, the choice of 16 as a partition factor makes
the coarse and fine matrices unbalanced. To the contrary,
λ-ADJUST finds an appropriate number of reconfiguration
matrices and maintains a small deviation for elements in the
same reconfiguration.

Table I shows a detailed comparison between the four
algorithms mentioned in this paper: EXACT, MIN, DOUBLE

Algorithm 1 λ-ADJUST algorithm
Input:

N ×N non-negative integer matrix D, positive integer λ
and T

Output:
a set of configuration matrices P (1), . . . , P (s) and the
corresponding non-negative integer weights l1, . . . , ls

Description:
1: Set the regulating factor δ =

√
T/λN . Split traffic matrix

D into quotient matrix A and residue matrix B, such that

aij = 	 dij

T/δN



bij = max(0, dij − �T/δN� × aij)

1 ≤ i, j ≤ N

2: Schedule quotient matrix A

1) Construct an N×N bipartite multigraph GA from A.
Vertices in GA stand for switch ports. The number
of edges between vertices is equal to the value of
the corresponding entry in A.

2) Find a minimal edge coloring of GA. For detailed
procedures, please refer to [8].

3) Map the edge-coloring results back to switch con-
figurations. Edges with a specific color in GA cor-
respond to a switch configuration P (i). Repeat this
step until no color is left.

3: Schedule residue matrix B

1) Method a. Find any N non-overlapping switch sched-
ules whose summation is an all 1’s matrix, and set
li to be �T/δN�, or

2) Method b. Use MIN algorithm
3) Method c. Use edge-coloring algorithm. Construct an
N×N bipartite unigraph GB from B. Vertices in GB

stand for switch ports. There is one edge between
vertex i and j if bij 
= 0. The following operation is
similar to what is done to GA.

and λ-ADJUST. They are compared with each other on
time complexity, covering cost bounds and the number of
configurations used to cover the traffic matrix.

Fig. 5 shows the number of configurations DOUBLE and
λ-ADJUST algorithms will use for switch with port number
32. The three almost horizontal dotted lines stand for the
number of configurations DOUBLE needed to cover coarse
matrix, fine matrix and the whole traffic matrix (from bottom
to up respectively). Even if λ changes from a relatively
small value (0.05T ) to a large value (T ), DOUBLE cannot
alter its scheduling decision. In contrast, the total number of
configurations that λ-ADJUST uses decreases as λ gets larger.
This automatically defeats the inverse effects of increased re-
configuration overheads. Fig. 6 is the covering cost comparison
between DOUBLE and λ-ADJUST algorithms. Because of
its property of self-adjustment to different system parameters,
λ-ADJUST saves up to 20% covering cost on average over
DOUBLE for small switch port number (N=16). The saving
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Fig. 4. Example of execution of MIN, DOUBLE and λ-ADJUST

TABLE I

Comparison between EXACT, MIN, DOUBLE and λ-ADJUST

Number Covering Time
configurations cost bound complexity

EXACT O(N2 − 2N + 2) T + (N2 O(N5)
−2N + 2)λ

MIN O(N)
∑s

k=1 lk + Nλ O(N4)
DOUBLE 2N 2T + 2Nλ O(N2 log N)

λ - (
√

T/λN + 1)N T + λN+ O(δN2 log N)
ADJUST 2

√
λTN

effect increases for larger switches, i.e. 50% for 32 × 32
switches, and longer reconfiguration times.

Let us further consider the performance of λ-ADJUST under
the marginal overhead values as λ → 0 and λ → ∞. When
λ→ 0, δ =

√
T/λN → ∞, T/δN → 0, which implies traffic

matrix D is divided as D = D + 0. Now λ-ADJUST equals
to using only Step 2 (edge-coloring) to find a covering for
the traffic matrix. It can achieve the lower bound of

∑s
k=1 lk

(which is the same result as EXACT), but may use a slightly
more configurations. The result is satisfactory compared to the
reduction of time complexity from O(N4) to O(δN2 logN).
If λ→ ∞, λ-ADJUST puts traffic matrix solely into residual
matrix. Step 3 determines its performance. Choices can be
made based on complexity and performance requirements.

IV. CONCLUSION

Along with the fast development of the Internet, optical
switching technologies are becoming attractive for their huge
capacity and scalability. However, the existence of reconfigu-
ration delay makes the Optical Switch Scheduling (OSS) prob-
lem to be NP-complete. A good heuristic algorithm should find
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Fig. 6. Cost difference between DOUBLE and λ-ADJUST. The value
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CostADJUST )/(CostDOUBLE).

a balance between the number of configurations and empty
time slots over all possible delay values. λ-ADJUST algorithm
dynamically suits with system parameters and achieves good
results. Mathematical deductions and simulations show that
it outperforms the previous algorithm over a large range
of configuration delay values. In addition, the algorithm is
stable and provides bounded delay guarantee with small time
complexity.
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